Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect ; 87(2): 103-110, 2023 08.
Article in English | MEDLINE | ID: covidwho-2318208

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe the prevalence, genetic diversity, and evolutionary dynamics of HMPV. METHODS: Laboratory-confirmed HMPV were characterised based on partial-coding G gene sequences with MEGA.v6.0. WGS was performed with Illumina, and evolutionary analyses with Datamonkey and Nextstrain. RESULTS: HMPV prevalence was 2.5%, peaking in February-April and with an alternation in the predominance of HMPV-A and -B until the emergence of SARS-CoV-2, not circulating until summer and autumn-winter 2021, with a higher prevalence and with the almost only circulation of A2c111dup. G and SH proteins were the most variable, and 70% of F protein was under negative selection. Mutation rate of HMPV genome was 6.95 × 10-4 substitutions/site/year. CONCLUSION: HMPV showed a significant morbidity until the emergence of SARS-CoV-2 pandemic in 2020, not circulating again until summer and autumn 2021, with a higher prevalence and with almost the only circulation of A2c111dup, probably due to a more efficient immune evasion mechanism. The F protein showed a very conserved nature, supporting the need for steric shielding. The tMRCA showed a recent emergence of the A2c variants carrying duplications, supporting the importance of virological surveillance.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Humans , Infant , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Spain/epidemiology , Genotype , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Phylogeny
2.
Clin Microbiol Infect ; 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2227517

ABSTRACT

OBJECTIVES: To monitor the early emergence of genetic mutations related to reduced susceptibility to monoclonal anti-body (mAb)-based treatment in immunocompromised patients with long-term viral excretion using whole-genome sequencing at a tertiary university hospital in Barcelona, Spain. METHODS: Serial severe acute respiratory syndrome coronavirus 2-positive samples (mid-December 2021-mid-March 2022) from eight immunosuppressed, fully vaccinated patients (for solid-organ transplantation or haematologic malignancies) with long-term viral excretion despite undergoing mAb therapy (sotrovimab) for coronavirus disease 2019 were selected. Whole-genome sequencing was performed following the ARTIC, version 4.1, protocol on the MiSeq platform. Mutations in the coding sequence of the spike protein with a frequency of ≥5% were studied. RESULTS: A total of 37 samples from the studied cases were analysed. All the cases, except one, were confirmed to have the Omicron variant BA.1; one had Delta (AY.100). Thirty-four different mutations were detected within the receptor-binding domain of the spike protein in 62.5% of patients, eight of which were not lineage related and located in the sotrovimab target epitope (P337L, E340D, E340R, E340K, E340V, E340Q, R346T and K356T). Except for P337L, all changes showed a significant increase in frequency or fixation after the administration of sotrovimab. Some of them have been associated with either reduced susceptibility to mAb therapy, such as those at position 340, or the acquisition of a new glycosylation site (346 and 356 positions). CONCLUSIONS: This study highlights the importance of monitoring for early in vivo selection of mutations associated with reduced susceptibility to mAb therapy, especially in immunocompromised patients receiving anti-viral drugs, whose immune response is not able to control viral replication, resulting in long-term viral shedding, and those receiving selective evolution pressure. Virologic surveillance of genetically resistant viruses to available anti-viral therapies is considered a priority for both patients and the community.

3.
Sci Rep ; 12(1): 22571, 2022 12 29.
Article in English | MEDLINE | ID: covidwho-2186008

ABSTRACT

The SARS-CoV-2 Omicron variant emerged showing higher transmissibility and possibly higher resistance to current COVID-19 vaccines than other variants dominating the global pandemic. In March 2020 we performed a study in clinical samples, where we found that a portion of genomes in the SARS-CoV-2 viral population accumulated deletions immediately before the S1/S2 cleavage site (furin-like cleavage site, PRRAR/S) of the spike gene, generating a frameshift and appearance of a premature stop codon. The main aim of this study was to determine the frequency of defective deletions in prevalent variants from the first to sixth pandemic waves in our setting and discuss whether the differences observed might support epidemiological proposals. The complete SARS-CoV-2 spike gene was deeply studied by next-generation sequencing using the MiSeq platform. More than 90 million reads were obtained from respiratory swab specimens of 78 COVID-19 patients with mild infection caused by the predominant variants circulating in the Barcelona city area during the six pandemic waves: B.1.5, B.1.1, B.1.177, Alpha, Beta, Delta, and Omicron. The frequency of defective genomes found in variants dominating the first and second waves was similar to that seen in Omicron, but differed from the frequencies seen in the Alpha, Beta and Delta variants. The changing pattern of mutations seen in the various SARS-CoV-2 variants driving the pandemic waves over time can affect viral transmission and immune escape. Here we discuss the putative biological effects of defective deletions naturally occurring before the S1/S2 cleavage site during adaption of the virus to human infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Codon, Nonsense
4.
Front Microbiol ; 13: 876409, 2022.
Article in English | MEDLINE | ID: covidwho-1903081

ABSTRACT

Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain). Methods: Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021. Whole-genome sequencing (WGS) was performed to confirm genetic differences between consensus sequences and for phylogenetic studies based on PANGOLIN nomenclature. Reinfections were confirmed by the number of mutations, change in lineage, or epidemiological criteria. Results: From 39 reported suspected reinfection cases, complete viral genomes could be sequenced from both episodes of 24 patients, all were confirmed as true reinfections. With a median age of 44 years (interquartile range [IQR] 32-65), 66% were women and 58% were healthcare workers (HCWs). The median days between episodes were 122 (IQR 72-199), occurring one-third within 3 months. Reinfection episodes were frequently asymptomatic and less severe than primary infections. The absence of seroconversion was associated with symptomatic reinfections. Only one case was reinfected with a variant of concern (VOC). Conclusion: Severe acute respiratory syndrome coronavirus 2 reinfections can occur in a shorter time than previously reported and are mainly found in immunocompetent patients. Surveillance through WGS is useful to identify viral mutations associated with immune evasion.

5.
Emerg Microbes Infect ; 11(1): 172-181, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541486

ABSTRACT

Herein, we describe the genetic diversity of circulating SARS-CoV-2 viruses by whole-genome sequencing (WGS) in Barcelona city (Catalonia, Spain) throughout the first four pandemic waves. From weeks 11/2020-24/2021, SARS-CoV-2-positive respiratory samples were randomly selected per clinical setting (80% from primary care or 20% from the hospital), age group, and week. WGS was performed following the ARTICv3 protocol on MiSeq or NextSeq2000 Illumina platforms. Nearly complete consensus sequences were used for genetic characterization based on GISAID and PANGOLIN nomenclatures. From 2475 samples, 2166 (87%) were fully sequenced (78% from primary care and 22% from hospital settings). Multiple genetic lineages were co-circulating, but four were predominant at different periods. While B.1.5 (50.68%) and B.1.1 (32.88%) were the major lineages during the first pandemic wave, B.1.177 (66.85%) and B.1.1.7 (83.80%) were predominant during the second, third, and fourth waves, respectively. Almost all (96.4%) were carrying D614G mutation in the S protein, with additional mutations that define lineages or variants. But some mutations of concern, such as E484K from B.1.351 and P.1 lineages are currently under monitoring, together with those observed in the receptor-binding domain or N-terminal domain, such as L452R and T478K from B.1.617.2 lineage. The fact that a predominant lineage was observed in each pandemic wave suggests advantageous properties over other contemporary co-circulating variants. This genetic variability should be monitored, especially when a massive vaccination campaign is ongoing because the potential selection and emergence of novel antigenic SARS-CoV-2 strains related to immunological escapement events.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Computational Biology/methods , Epidemiological Monitoring , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/virology , Physical Distancing , Prevalence , SARS-CoV-2/pathogenicity , Spain/epidemiology , Vaccination/methods , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL